476 research outputs found

    Trade-Offs Between Size and Degree in Polynomial Calculus

    Get PDF
    Building on [Clegg et al. \u2796], [Impagliazzo et al. \u2799] established that if an unsatisfiable k-CNF formula over n variables has a refutation of size S in the polynomial calculus resolution proof system, then this formula also has a refutation of degree k + O(?(n log S)). The proof of this works by converting a small-size refutation into a small-degree one, but at the expense of increasing the proof size exponentially. This raises the question of whether it is possible to achieve both small size and small degree in the same refutation, or whether the exponential blow-up is inherent. Using and extending ideas from [Thapen \u2716], who studied the analogous question for the resolution proof system, we prove that a strong size-degree trade-off is necessary

    Lower Bounds and PIT for Non-Commutative Arithmetic Circuits with Restricted Parse Trees

    Get PDF
    We investigate the power of Non-commutative Arithmetic Circuits, which compute polynomials over the free non-commutative polynomial ring F, where variables do not commute. We consider circuits that are restricted in the ways in which they can compute monomials: this can be seen as restricting the families of parse trees that appear in the circuit. Such restrictions capture essentially all non-commutative circuit models for which lower bounds are known. We prove several results about such circuits. - We show explicit exponential lower bounds for circuits with up to an exponential number of parse trees, strengthening the work of Lagarde, Malod, and Perifel (ECCC 2016), who prove such a result for Unique Parse Tree (UPT) circuits which have a single parse tree. - We show explicit exponential lower bounds for circuits whose parse trees are rotations of a single tree. This simultaneously generalizes recent lower bounds of Limaye, Malod, and Srinivasan (Theory of Computing 2016) and the above lower bounds of Lagarde et al., which are known to be incomparable. - We make progress on a question of Nisan (STOC 1991) regarding separating the power of Algebraic Branching Programs (ABPs) and Formulas in the non-commutative setting by showing a tight lower bound of n^{Omega(log d)} for any UPT formula computing the product of d n*n matrices. When d <= log n, we can also prove superpolynomial lower bounds for formulas with up to 2^{o(d)} many parse trees (for computing the same polynomial). Improving this bound to allow for 2^{O(d)} trees would yield an unconditional separation between ABPs and Formulas. - We give deterministic white-box PIT algorithms for UPT circuits over any field (strengthening a result of Lagarde et al. (2016)) and also for sums of a constant number of UPT circuits with different parse trees

    Quelle place pour les adventices dans l’épidémiosurveillance ? Rapport au Comité National d’Epidémiosurveillance

    No full text
    La gestion des adventices est à juste titre considérée comme un frein majeur à l’adoption deméthodes intégrées de conduite des cultures peu dépendantes en produits phytosanitaires.Leur dynamique d’infestation se construisant sur plusieurs saisons culturales du fait du stock desemences dans le sol, les plantes adventices ne peuvent être gérées comme le seraient d’autresravageurs dépendant des seuls paramètres saisonniers pour déclencher leur épidémie. Pourautant notre groupe conclut que l’épidémiosurveillance des adventices peut être utile à unerationalisation des moyens de lutte. Elle peut permettre, sur le pas de temps court, d’optimiseren saison le choix tactique et le timing des interventions de tout ordre ayant un impact sur lesadventices et doit pour cela apparaître clairement dans les Bulletins de Santé du Végétal (BSV).Sa compilation sur plusieurs saisons permettra de mieux saisir l’évolution de la flore et depointer du doigt les facteurs responsables sous-jacents. Ceux-ci constituent autant d’éléments àintégrer dans l’analyse du risque et les préconisations stratégiques qui peuvent en découler. (...

    Trials

    Get PDF
    BACKGROUND: Recent data suggest that 10-20% of injury patients will suffer for several months after the event from diverse symptoms, generally referred to as post-concussion-like symptoms (PCLS), which will lead to a decline in quality of life. A preliminary randomized control trial suggested that this condition may be induced by the stress experienced during the event or emergency room (ER) stay and can be prevented in up to 75% of patients with a single, early, short eye movement desensitization and reprocessing (EMDR) psychotherapeutic session delivered in the ER. The protocol of the SOFTER 3 study was designed to compare the impact on 3-month PCLS of early EMDR intervention and usual care in patients presenting at the ER. Secondary outcomes included 3-month post-traumatic stress disorder, 12-month PCLS, self-reported stress at the ER, self-assessed recovery expectation at discharge and 3 months, and self-reported chronic pain at discharge and 3 months. METHODS: This is a two-group, open-label, multicenter, comparative, randomized controlled trial with 3- and 12-month phone follow-up for reports of persisting symptoms (PCLS and post-traumatic stress disorder). Those eligible for inclusion were adults (>/=18 years old) presenting at the ER departments of the University Hospital of Bordeaux and University Hospital of Lyon, assessed as being at high risk of PCLS using a three-item scoring rule. The intervention groups were a (1) EMDR Recent Traumatic Episode Protocol intervention performed by a trained psychologist during ER stay or (2) usual care. The number of patients to be enrolled in each group was 223 to evidence a 15% decrease in PCLS prevalence in the EMDR group. DISCUSSION: In 2012, the year of the last national survey in France, 10.6 million people attended the ER, some of whom did so several times since 18 million visits were recorded in the same year. The SOFTER 3 study therefore addresses a major public health challenge. TRIAL REGISTRATION: Clinical Trials. NCT03400813 . Registered 17 January 2018 - retrospectively registered

    The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI

    Full text link
    The GRAVITY instrument has been revolutionary for near-infrared interferometry by pushing sensitivity and precision to previously unknown limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer (VLTI) in GRAVITY+, these limits will be pushed even further, with vastly improved sky coverage, as well as faint-science and high-contrast capabilities. This upgrade includes the implementation of wide-field off-axis fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser guide stars in an upgraded facility. GRAVITY+ will open up the sky to the measurement of black hole masses across cosmic time in hundreds of active galactic nuclei, use the faint stars in the Galactic centre to probe General Relativity, and enable the characterisation of dozens of young exoplanets to study their formation, bearing the promise of another scientific revolution to come at the VLTI.Comment: Published in the ESO Messenge
    • …
    corecore